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Abstract The study compares one- and two-tiered forecasting systems as represented by the South
African Weather Service Coupled Model and its atmosphere-only version. In this comparative framework,
the main difference between these global climate models (GCMs) resides in the manner in which the sea
surface temperature (SST) is represented. The models are effectively kept similar in all other aspects. This
strategy may allow the role of coupling on the predictive skill differences to be better distinguished. The
result reveals that the GCMs differ widely in their performances and the issue of superiority of onemodel over
the other is mostly dependent on the ability to a priori determine an optimal global SST field for forcing
the atmospheric general circulation model (AGCM). Notwithstanding, the AGCM’s fidelity is reasonably
reduced when the AGCM is constrained with persisting SST anomalies to the extent to which the coupled
general circulation model’s superiority becomes noticeable. The result suggests that the boundary forcing
coming from the optimal SST field plays a significant role in leveraging a reasonable equivalency in the
predictive skill of the two GCM configurations.

1. Introduction

The practice of contemporary seasonal climate prediction requires state-of-the-art global climate models
(GCMs). The predictive skill of seasonal predictions mainly arises from the slowly evolving components of the
climate system which are found to significantly modulate the mean state weather conditions [Charney and
Shukla, 1981; Palmer and Anderson, 1994; Barnston et al., 1999]. Most of the signature of these slowly
evolving systems is believed to originate from the ocean and thus the interaction between the ocean and
the atmosphere is of paramount importance in the context of seasonal forecasting [Goddard et al., 2001]. In fact,
GCMs are classified into two distinct configurations, commonly referred to as one- and two-tiered forecasting
systems. These configurations are based on the manner in which information flows between the ocean and
the atmosphere. In the atmosphere-only configuration, the atmospheric general circulation models (AGCMs)
are forced with independently predicted or persisted SST (sea surface temperature) anomalies [Bengtsson
et al., 1993; Graham et al., 2005; Kug et al., 2008] with the assumption that the atmosphere responds to SST
but does not in turn affect the ocean [Copsey et al., 2006]. On the other hand, in one-tiered forecasting systems,
the way in which the ocean and atmosphere interact and evolve mimics processes found in nature [Palmer and
Anderson, 1994]. Therefore, this spontaneous two-way feedback mechanism provides coupled (ocean-atmo-
sphere) general circulation models (CGCMs) a distinctive advantage over AGCMs [Graham et al., 2005].

Historically, two-tiered forecasting systemswere the first to appear on the scene as seasonal forecasting tools and
are still practiced globally [e.g., Kirtman et al., 1997; Graham et al., 2000; Tennant and Hewitson, 2002;
A. F. Beraki et al., Global dynamical forecasting system conditioned to robust initial and boundary
forcings: Seasonal Context, submitted to International Journal of Climatology, 2015]. Despite the enormous cost
implications and complexity, one-tiered forecasting systems appear to have gained preference over two-tiered
forecasting systems over recent years, and their use by operational centers is steadily growing [e.g., Stockdale
et al., 1998; Palmer et al., 2004; Graham et al., 2005; Saha et al., 2006; Molteni et al., 2007; Beraki et al., 2014].
This proliferation of interest is presumably stimulated by the fast development of computational technology
complemented by the fact that many intercomparison studies suggest the superiority of CGCMs to AGCMs
[e.g., Yu and Mechoso, 1999; Fu et al., 2002; Graham et al., 2005; Kug et al., 2008; Landman et al., 2012;
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Chaudhari et al., 2013; Zhu and Shukla, 2013, 2014], even though similar studies report that only marginal
differences exit [e.g., Boville and Hurrell, 1998; Jha and Kumar, 2009; Colfescu et al., 2013]. Most of these
numerical studies report the weakness of AGCMs in simulating the Asian monsoon during the austral winter,
where air-sea interaction plays a significant role. In contrast, CGCMs are distinctively able to rectify the problem
and to better represent air-sea coupling in the tropical Indian and western Pacific Oceans [Fu et al., 2002;
Kug et al., 2008]. In addition, Graham et al. [2005] suggest that coupled models can provide substantial benefits
for seasonal prediction not only in tropical regions but also in the extratropics.

It is commonly believed that coupled climate models are placed at the highest hierarchy in the science of
numerical modeling in terms of complexity [Stockdale et al., 1998; Palmer et al., 2004]. In theory, they are
largely hypothesized to represent state-of-the-art of seasonal forecasting which inherently renders them
convenient for operational seasonal climate prediction purposes. Notwithstanding, it may also be important
to consider whether two-tiered forecasting systems offer comparable levels of skills that are currently
attainable by state-of-the-art coupled models [Troccoli et al., 2008] on one hand and the inhibiting factor
of the computational requirement to operate such coupled systems on the other hand. The latter considera-
tionmay be of particular importance in developing countries with less advanced capabilities and especially at
operational centers within these countries tasked to produce real-time seasonal forecast output. Moreover,
although as noted earlier, both model configurations are used at a number of operational centers, their com-
parison on seasonal prediction in an operational environment is less explored. It is worth emphasizing that it
may be beneficial to objectively assess the relative merit or limitations of these forecasting systems under a
constrained resources scenario. The aim of this paper is, therefore, to undertake a performance comparison of
one- and two-tiered forecasting systems where the AGCM is constrained by the lower boundary conditions
derived from predicted SST anomalies of two CGCMs’ forecasts in contrast to persisted or empirically pre-
dicted SSTs [e.g., Graham et al., 2005] while the two systems share a great deal of similarities in other aspects.
To achieve our goal, the South African Weather Service (SAWS) Coupled Model (SCM) [Beraki et al., 2014] and
its atmospheric version [Roeckner et al., 1996; A. F. Beraki et al., submitted manuscript, 2015] are used. These
two forecasting systems are currently running operationally at the SAWS as part of a multimodel system
[Landman and Beraki, 2012]. The notion is also tested under a perfect model framework [Colfescu et al., 2013]
and persistence (an AGCM forced with persisted SST anomalies) [Graham et al., 2005]. The former configuration
eliminates differences due to model bias between the CGCM and AGCM and enables the isolation of the role of
coupling. In this framework, the AGCM is forced with the CGCM (SCM) retroactive SST simulations.

The paper is organized as follows. In section 2, the experimental design is described. Results from composite
and time series analyses are presented on section 3. In section 4, differences in the predictive skill of the
CGCM and the AGCM are elucidated. A summary and conclusions are given in section 5.

2. Experimental Design
2.1. Description of GCMs

The study compares the SCM and its atmosphere-only version as mentioned above. The SCM is described in
depth in Beraki et al. [2014] while we only briefly describe the model here.

The SCM couples the European Centre/Hamburg (ECHAM) 4.5 AGCM [Roeckner, 1996] and the Geophysical
Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 3 [Pacanowski and Griffes, 1998] using the
Multiple Program and Multiple Data fully parallelized coupler paradigm [Komori et al., 2008]. Under this
coupling framework, the atmosphere and ocean models are treated as standalone versions apart from the
interface that handles the exchange of information between the models.

While the AGCM, as in the two-tiered experiment, uses T42 (triangular truncation at wave number 42) horizontal
resolution and 19 unevenly spaced hybrid sigma layers, the OGCM (ocean general circulation model) has a
0.58° uniform zonal resolution, with a variable meridional resolution of 0.5° between 10°S and 10°N, gradually
increasing to 1.5° at 30°S and 30°N and fixed at 1.5° in the extratropics. In the vertical, the OGCM uses 25 layers
with 17 layers in the upper levels between 7.5m and 450m.

2.2. Retroactive Forecasts

In this comparison experiment, the fundamental difference between the GCMs, as noted earlier, arises from
the manner in which the ocean and atmosphere interact with each other. The two systems remain nearly
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identical in other respects. In the CGCM experiment, the AGCM and OGCM exchange information per
simulation day. The AGCM feeds the OGCM with heat, momentum, freshwater, and surface solar flux. The
OGCM, in turn, feeds the AGCM SST information. The coupling strategy used in this configuration is an
anomaly coupling on the AGCM side and full-field coupling on the OGCM side, meaning that the anomalous
atmospheric fluxes are superimposed on the observed climatology as in Ji et al. [1998] and DeWitt [2005]. The
ocean initial conditions are taken from the ODA (ocean data assimilation) system produced at GFDL that
employs an optimum interpolation scheme [Derber and Rosati, 1989]. However, it is worth mentioning that
seasonal climate prediction skill may be dependent on the accuracy of ODA on which systems are initialized
from [Zhu et al., 2012].

In the two-tiered experiment, however, the AGCM is constrained by the lower boundary conditions derived
from the predicted SST of two CGCMs combined with equal weighting. The two CGCMs are the SCM [Beraki
et al., 2014] and the NCEP CFS v2 (National Centers for Environmental Prediction, Climate Forecasting System
Version 2) [Saha et al., 2014]. The benefit of the multimodel approach has been reported in many forecasting
studies over recent years [e.g., Krishnamurti et al., 2000; Palmer et al., 2004; Doblas-Reyes et al., 2005; Hagedorn
et al., 2005; Kirtman et al., 2014]. In addition, the SST uncertainty amplitude (lower and upper bounds) defined
from this combination is also considered as separate forcing fields. To identify the uncertainty amplitude,
a slight perturbation was applied to the multimodel ensemble mean of the SST independently for all
lead months (lead 0 to lead 8) using empirical orthogonal function (EOF) analysis [North, 1984]. The first
normalized EOF mode was retained to describe the uncertainty term assuming that the variance is best
explained by the most dominant EOFmode and subsequently subtracted from or added to themultimodel SST
(A. F. Beraki et al., submitted manuscript, 2015).

Although more emphasis is placed on the understanding of whether the AGCM is a viable option to the CGCM
under a constrained computational resource scenario, it is worth emphasizing that the use of multimodel SST
forcing into the AGCM’s configuration deviates slightly from a perfect model framework [Colfescu et al.,
2013]. For scientific purpose, this approach may not cleanly eliminate differences between the CGCM and
AGCM due to model bias or isolate the role of coupling. However, from the perspective of operational forecasts,
the multimodel SST forcing may offer a better optimization option. For interest of quantifying the extent
of the disparity in biases and skill differences, the AGCM is also constrained by the predicted SST derived
from the CGCM only, as in Colfescu et al. [2013], and for convenience hereafter referred to as “AGCMc.” Also
included are model simulations performed with persisting observed SST anomalies taken from the Optimum
Interpolation version 2 [Reynolds, et al., 1994] as a lower boundary condition to the AGCM (hereafter referred
to as “AGCMp”). The rationale of including the AGCMp experiment is to gain additional insight into the
AGCM’s predictive skill relative to the CGCM when the AGCM is independently configured from the influence
of the CGCM(s), as this may delineate the lower limit of the skill of the AGCM. Furthermore, this forecast strategy
was used in similar comparative studies [e.g., Boville and Hurrell, 1998; Graham et al., 2005].

The CGCM and the AGCM (also AGCMp and AGCMc) use the same atmospheric initialization strategy. The
atmospheric initial conditions (ICs) are obtained from the NCEP/DOE (Department of Energy) Atmospheric
Model Intercomparison Project II Reanalysis data set [Kanamitsu et al., 2002]. The NCEP/DOE atmospheric
states are transformed to the horizontal and vertical resolution (T42L19) of the ECHAM 4.5 AGCM in a manner
that maintains numerical and gravitational stability as explained in Beraki et al. [2014]. The only difference is
that the lower layer atmospheric temperature over the ocean (atmosphere-ocean interface) is assimilated
from the multimodel ensemble mean of the SST and from the GFDL-ODA ocean state for use in the AGCM
and the CGCM, respectively. This is done to minimize the imbalance between upper ocean mass field
and wind stress [DeWitt, 2005]. The uncertainties that arise from the ICs are accounted for by taking 10
consecutive daily atmospheric states back from the forecast date in each month and year. The November
hindcasts, for example, consider the ICs that extend over the 10day period from 26 October to 4 November
for 28 years starting from 1982 and ending in 2009. The combination of ocean state and atmospheric state gives
rise to 10 and 30 ensemble integrations of the CGCM and the AGCM, respectively.

2.3. Observation Data

The model surface and upper air data are compared against the respective observed data compiled from
different sources. For the surface variables, rainfall and air temperatures are acquired from the Climate
Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) [Xie and Arkin, 1997] and the Climatic
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Research Unit (CRU) [Harris et al., 2014], respectively. For pressure data analyses, the (NCEP/DOE) [Kanamitsu
et al., 2002] is used as a proxy for observation.

3. Climatological and Temporal Differences

The results presented in this section are taken from the coupled and uncoupled models’ hindcast simulations
for the 28 years from 1982 to 2009. In this study, the lead time is defined from the starting month when the
model is initialized. For example, hindcasts from November ICs for NDJ (November-December-January) are
referred to as zero month lead time hindcasts, while hindcasts for December-January-February (DJF), with
the same initial conditions, are made at a 1month lead time and so forth.

First, we investigate the role of the oceanic evolution of sea-air interaction by zooming in on the equatorial
Indo-Pacific (Asian monsoon) region. Since the region has become the subject of many similar numerical
studies, as noted earlier, it may be used as a bench mark for comparative assessments here.

The composite analysis of rainfall during the austral summer (DJF) at a 1month lead time for part of the
global region that centers the equatorial Indian and Pacific Oceans is shown in Figure 1. The two models
(CGCM and AGCM) capture the CMAP climatological distribution reasonably well. They also consistently
manifest similar bias patterns, with the exception that the AGCM exhibits a greater dry bias over the western
and central Indian Ocean and a wet bias over the western Pacific Ocean. The CGCM is more biased over the
eastern Pacific region south of the equator at about 120°W. The AGCMc also exhibits similar bias patterns to
the AGCM, although the absolute bias difference is slightly shallower than the AGCM (Figure 1h and 1i).
Similar composite analysis for the austral winter (June-July-August (JJA); Figure 2) suggests that both the
CGCM and AGCM are able, once again, to represent the observed spatial patterns of rainfall reasonably well.

Figure 1. Climatological representation of austral summer mean (DJF) precipitation (mm/d). (a) Observation, (b) CGCM, (c) AGCM, (d) CGCM biases, and (e) AGCM
bias. (g) AGCMc (AGCM forced with the SCM predicted SST anomalies; see text) bias, (h) absolute value difference between CGCM bias and AGCM bias, and
(i) the same as Figure 1h but for the AGCMc. The absolute bias differences enable to easily identify where exactly the GCMs differ; nonetheless, the direction of the
bias should be interpreted in conjunction to Figures 1e–1g. Also shown on the title of each bias plots is area averaged root-meansquare error ((Figures 1e–1h) RMSE).
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The analysis also reveals that the CGCM appears to overestimate daily rainfall over the eastern equatorial
Pacific region, while the AGCM is more biased over the eastern Indian Ocean and western Pacific Ocean
adjacent to Australia at about 10°S. It is worth noting that the AGCM and the AGCMc hardly differ in terms
of bias distributions as also shown in their area averaged root-mean-square error (RMSE) differences (see
Figures 1 and 2) and all GCMs appear to be more biased during the austral winter than they are during the
summer (Figures 1d and 1e).

The zonally averaged (over the zonal extent of Figures 1 and 2) DJF and JJA rainfall (mm/d) depicted in
Figure 3 shows that the CGCM, AGCM, and AGCMc forecasts are in good agreement with the observed
rainfall. In the tropics, the symmetry and position of the ITCZ (Intertropical Convergence Zone) are well
represented in all simulations. The midlatitude storm tracks are also adequately represented despite all
forecast strategies overestimate the DJF and JJA rainfall over the northern hemisphere (NH) and southern
hemisphere (SH), respectively. However, the difference among the forecasting systems seems to be that
the CGCM shows a slight tendency to exaggerate the tropical peak during DJF and JJA comparing to the
two AGCM configurations.

The time evolution of rainfall biases across the equatorial Indo-Pacific region is further demonstrated in
Figures 4–6 through the use of Hovmöller diagrams. The absolute bias differences computed from the
GCM biases and ENSO (El Niño–Southern Oscillation) information are also included in the plots to enhance
objective interpretation and to better characterize the meridional and temporal bias differences. The ENSO
phases are represented with the Oceanic Niño Index (ONI) [L’Heureux et al., 2012]. However, it is worth noting
that care should be exercised when identifying wet or dry biases because the absolute value differences
only emphasize whether the AGCM or the CGCM is more biased. During JJA season, the GCMs exhibit nearly
indistinguishable differences in the Indian Ocean sector (Figures 4i and 4g), whereas the AGCM and the
AGCMc consistently underrepresent the DJF CMAP estimates (Figures 4b–4e). Notwithstanding, the GCMs
biases are more pronounced over the equatorial Pacific Ocean than over the equatorial Indian Ocean.

Figure 2. As in Figure 1 but for austral winter.
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According to Figure 5, the AGCM exhibits
wetter bias than the CGCM or the AGCMc
during the austral summer over the western
Pacific region. During the austral winter, in
contrast, both AGCM prediction strategies
(though more strengthened in the case of
the AGCMc; Figures 5i and 5g) are relatively
biased in comparison to the CGCM in the
vicinity of the equator, while the CGCM is
noticeably biased over the southern hemi-
sphere around 15°N. It is also noticeable that
the CGCMoverestimates the rainfall over the
equatorial eastern Pacific during the austral
summer (Figures 6d and 6e) while both
AGCM configurations overestimate rainfall
during the austral winter at about 15°N
(Figures 6i and 6g), with the exception that
the CGCM is more biased than the AGCM in
1983, 1989–1992, and 1997.

The biggest bias differences between the
AGCM (AGCMc) and the CGCM over the
equatorial Pacific regions mostly coincide
with neutral ENSO. In the western Pacific
during the austral winter season (Figures 5i
and 5g), the largest biases of the CGCM are
found (for example, in 1989, 1990, 2001, and
2009) during neutral ENSO years over areas
surrounding 15°N; likewise, the AGCMc (lar-

gely reduced in the AGCM; Figure 5i) is noticeably biased (for example, in 1984, 1985, 1988, 1993, and 2003) over
the area confined within the equator and 15°S. During DJF over the eastern equatorial Pacific, the CGCM biases
are intensified in 1990, 1991, 2002, and 2009 (Figures 6d and 6e). Furthermore, the distribution of the model
biases is more intense during the austral winter than during the summer, particularly for the western
(Figures 4f–4h) and eastern Pacific (Figures 5f–5h). This result may suggest that the GCM’s atmospheric
response seems to depend on the accuracy of SST predictions. The dynamical ENSOpredictive skill is minimized
due to the NH spring barrier [Saha et al., 2006; Beraki et al., 2014]. The result further suggests that the CGCM’s
excessive rainfall in the tropics (Figure 3) may be attributed to the SST bias found within the time evolution of
the air-sea coupling process which is slightly minimized in the AGCM (AGCMc) with the use of prescribed SST
forcing. This may reinforce the conclusion that both GCMs are able to respond to the SST fluctuations equally
and that the role of the evolution of sea-air interaction anticipated to favor the CGCM is not clearly established
in the cases we have tested for the Asian monsoon regions, particularly during the austral winter despite that
previous similar studies reported in favor of the CGCMs [e.g., Fu et al., 2002; Kug et al., 2008].

However, the result presented above does not consider whether those differences between the two forecasting
systems are statistically significant. To approach the problem indirectly, we perform a statistical significance test
using the Wilcoxon-Mann-Whitney nonparametric approach without involving observations [Graham et al.,
2005; Wilks, 2006]. Figures 7 and 8 show the spatial extent and temporal frequencies when the CGCM and
the AGCM rainfall fields are found to be different in their probability density functions (PDFs) with a statistical
significance at the 95% level for the austral summer and winter seasons at a 1month lead time, respectively.
The PDFs are represented with 10 and 30 ensemble members of the CGCM and the AGCM, respectively.
According to this result, more than 80% of the time the source of variation between the coupled and uncoupled
models arises mostly from the equatorial region. During the austral summer, more pronounced differences are
found over the equatorial eastern Pacific Ocean, Brazil, Atlantic Ocean, and the southeastern Australian coast
(Figure 7a). Likewise, these differences are noticeable in the Pacific Ocean and Atlantic Ocean off the coast of
West Africa during austral winter (Figure 8a). Most of the peaks in the areal extent differences between the

Figure 3. Zonally averaged total rainfall (mm/d) for (a) DJF and (b) JJA
1month lead for the SCM, two different configurations of ECHAM 4.5
AGCM (as shown in the inset), and observation from CMAP [Xie and Arkin,
1997]. The temporal average is from 1982 to 2009 and the zonal extent is
as in Figures 1 and 2.
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two models are consistently concentrated over the Pacific region during JJA, although the differences are
confined over the eastern Pacific region during DJF. It is also noticeable that the peaks are mostly found during
neutral ENSO conditions. As noted earlier, the GCMs also differ mostly over the equatorial Pacific region in terms
of biases (Figures 5 and 6). Similar analysis between the CGCM and the AGCMr (AGCMc), in which the GCMs use
the same ensemble size, demonstrate that most of the source of differences similarly arise from the equatorial

Figure 4. Hovmöller diagrams for the austral (top) summer and (bottom) winter rainfall at 1 month lead time zonally
averaged over the equatorial Indian Ocean (50°E–110°E). As shown in the title of each plot, rainfall biases are computed
from the hindcast simulations of the GCMs against CMAP estimates and among the GCMs themselves. (d, e, g, and i) The
absolute bias differences between the CGCM and AGCM (CGCMc) presented to highlight the meridoinal and temporal
differences of the GCMs. The anomalous and neutral phases of ENSO, where � denotes La Niña, + denotes El Niño, and 0
denotes neutral, are shown on the right side of Figures 4e and 4g. The two strongest El Nino episodes are also indicated
with asterisk. The ENSO phases are based on the Oceanic Niño Index (ONI) [L’Heureux et al., 2012] obtained from the
National Oceanic and Atmospheric Administration (NOAA), Climate Prediction Center (CPC) (http://www.cpc.ncep.noaa.
gov/products/analysis_monitoring/ensostuff/ensoyears.shtml).
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region. However, in both cases the differences in the areal extent over the tropical Pacific are reduced to some
extent particularly between the CGCM and the AGCMc during JJA seasons (not shown). The result attests the
realism of the bias differences discussed so far.

4. Differences in the Seasonal Predictive Skills

The GCMs are investigated for their relative performance for different seasons and lead times. This
comparative analysis is based on the 28 year hindcast of the AGCM and the CGCM which consists of 30
and 10 ensemble members, respectively. Furthermore, results from the AGCMc and the AGCMp, which
each has the same ensemble size as the CGCM, are also presented. Each ensemble set mimics a set of
operational forecasts because the sets were created in a manner similar to how operational forecasts
at SAWS, a World Meteorological Organization (WMO)-recognized Global Producing Center, are being

Figure 5. As in Figure 4 but for western equatorial Pacific sector (120°E–170°E).
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conducted. This approach offers a better insight into the relative enhancement or degradation of forecast
quality in an operational environment.

4.1. Comparison Based on the Ensemble Mean

The impact of the oceanic evolution of sea-air interaction (only supported in the CGCM) and the use of
prescribed multimodel SST forcing (only supported in the AGCM) on the predictive skill of seasonal forecasts
is compared by first evaluating the ensemble mean of the GCMs. The anomaly of each model is computed
about its own drifted climatology before the statistics are applied in order to remove biases from the
model forecasts as a function of lead months. We first concentrate on atmospheric pressure fields as the
signatures of most climate drivers (ocean-atmosphere coupling phenomena) including, among other things,
ENSO [Neelin et al., 1998; Wallace et al., 1998], Indian Ocean Dipole (IOD) [Saji et al., 1999] and Pacific South
America [Mo and Ghil, 1987], which are represented in the mean sea level pressure (mslp) or geopotential

Figure 6. As in Figure 4 but for eastern equatorial Pacific sector (170°E–60°W).
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height (GH) fields. To facilitate the com-
parison, we use the mean square skill
score (MSSS) [Murphy, 1988]. The MSSS
is computed using the mean-square
error (MSE). The MSE of each model is
independently calculated first against
the NCEP/DOE. In this comparison, the
MSSS of the CGCM is identified by taking
the AGCM as a reference forecast (i.e.,
MSSS=1�MSECGCM/MSEAGCM). The skill
score therefore represents gains or losses
in the forecast skill relative to the refer-
ence forecast. In this context, the MSSS
approaches +1 (approaches �∞) if the
CGCM (AGCM) perfectly outperforms its
counterpart and the gradient between
+1 and �∞ measures the degree of
superiority (inferiority) of one model
over the other. The CGCM and AGCM
predictive skill equates when the ratio
of MSE of one model to the other
approaches 1.

Figure 9 shows the extent to which the
CGCM’s predictive skill has improved
(degraded) relative to the AGCM in
predicting the mslp during DJF and
JJA seasons with a 95% level of statisti-
cal significance. The significance level
is identified using the bootstrap non-
parametric procedure (sampling with
replacement) [Wilks, 2006], where
the analysis is repeated 1000 times.
According to this result, the predic-
tive skill of the CGCM during the
austral summer appears to signifi-
cantly strengthen across the equator-
ial Indian Ocean and in the vicinity of
central and North America relative to
the AGCM, but the benefit diminishes
as a function of lead time. The AGCM,

however, consistently outperform the CGCM on the equatorial Pacific region across all lead times considered.
Results from AGCMc (maps not shown) demonstrate a relative skill degradation predicting mslp. The finding
may support the notion that the use of multimodel SST forcing in the AGCM configuration played a significant
role for the best performance of the AGCM. A. F. Beraki et al. (submittedmanuscript, 2015) also showed that the
skill and accuracy of the Niño 3.4, derived from the multimodel ensemble SST used to force the AGCM, intensi-
fied during the austral summer as the lead time increases.

During the austral winter, the coupled model gains significant advantage over the atmospheric model
particularly at 1 and 3month lead times on the equatorial region, with the exception of the eastern Pacific
sector. The strength of the CGCM skill over the equatorial Indian Ocean is also noticeable at short lead times.
However, its skill is significantly reduced over the eastern part to the extent that the AGCM takes the
lead as the lead time increases (Figures 9d and 9f). In the prediction of the austral winter mslp over the
Asian monsoon region, the CGCM outperforms the AGCM, although its superiority decays quickly as the lead
times increase.

Figure 7. (a) Number of years (out of 28, 1982–2009) when CGCM and
AGCM ensemble distributions for DJF (lead 1) rainfall were found significantly
different at the 95% level with a Wilcoxon-Mann-Whitney test performed at
each grid point. (b) Time series of the percentage area where CGCM and
AGCM ensemble distributions for austral summer (DJF lead 1) rainfall are
found significantly different at the 95% level. Black, dark grey, and light grey
bars denote equatorial Indian Ocean, western equatorial Pacific Ocean,
and equatorial eastern Pacific Ocean, respectively. Annotation represent
anomalous phases of ENSO, where asterisk denotes La Niña and + denotes
El Niño. The ENSO phases are based on the Oceanic Niño Index (ONI)
[L’Heureux et al., 2012].
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In the 500hPa geopotential height (GH)
comparative analysis, the AGCM’s benefit
during the DJF season is well manifested
over the eastern part of the equatorial
Pacific region and the northern South
America subcontinent with a tendency
of deepening as the lead time increases
(Figures 10c and 10e), despite the CGCM
performing better over the southern
Africa subcontinent. At enhanced lead
times (Figures 10c and 10e), the domi-
nance of the AGCM is also extended over
equatorial Africa and the Indian Ocean.
During the JJA season, the CGCM is found
to outperform the AGCM over the Asian
monsoon basin at a 1month lead time,
although the benefit is changed in favor
of the AGCM at extended lead times.
The superiority of one model over the
other during the winter season is mostly
indistinguishable as opposed to the
austral summer for the 500hPa GH.
Previous evaluation studies [Beraki et al.,
2014; A. F. Beraki et al., submitted manu-
script, 2015] conducted on these models
using the same hindcasts show indepen-
dently that reasonable skill of the GCMs
in predicting pressure fields taken clima-
tological forecast as a reference is found
mostly over the equatorial region and
the predictive skill presented here should
therefore be viewed in relative terms.

The finding is consistent with what has been discussed so far with regard to the prevalence of noticeable
differences over the equatorial (notably Pacific) region in spite of the narrowing tendency in (bias and skill)
differences under the perfect model framework. The other point worth mentioning is that the evolution of
sea-air interaction expected to favor the CGCM is barely supported particularly at longer lead time. This result
may suggest that the differences are better explained by model biases which tend to be intensified during
neutral ENSO episodes rather than the coupling issue, per se.

Furthermore, what has transpired from the comparative analyses of pressure fields is that the differences
between the GCMs are a function of both space and time of the year (i.e., seasonality). For example, the
CGCM is superior over the Asian monsoon region during the austral winter, but skill deteriorates rapidly with
increasing lead time or for a different season. Although both the CGCM and the AGCM are skillful but not
necessarily over the same areas, seasons or even lead times, combining the forecast from these two models
in a multimodel system may further improve on the forecasts.

Further, we examine the implication of variations in the pressure fields of the GCMs on ENSO and equatorial IOD
(which are the main climate variability modes and most relevant at the seasonal time scale) and coupling
responses (teleconnections). ENSO characteristics are represented using the Southern Oscillation Index (SOI),
the mslp difference between Tahiti (17.5°S, 149.5°W) and Darwin (12.5°S, 130.9°E), using the method suggested
by Ropelewski and Jones [1987]. Likewise, the IOD characteristics are measured using a pressure index with
anomalous difference between the mslp in the east and western tropical Indian Ocean [Saji et al., 1999]. The
indices of these climate drivers are deduced from mslp since previous observational studies show strong
association between mslp and SST indices [e.g., Philander, 1990; Behera and Yamagata, 2003]. The comparison
is based on the November initialized hindcasts since this month coincides with the onset of the seasonal peaks

Figure 8. As in Figure 7 but for austral winter.
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of ENSO, although IOD is more active during the austral spring [Beraki et al., 2014; Zhao and Hendon, 2009]. By
using a Taylor diagram [Taylor, 2001], Figure 11 presents skill comparisons by various forecasting methods in
predicting ENSO and the equatorial IOD. The skill is represented in the correlation [Wilks, 2006] and standard
deviation space of the Taylor diagram. The standard deviations are normalized with the corresponding observed
standard deviation to facilitate the comparison. The result reveals that differences in the skill and interannual varia-
bility between the CGCM and the AGCM at 0month (November-December-January; NDJ) and 1month (DJF) lead
times in predicting ENSO is marginal despite the ability of the GCMs to predict the mslp varying significantly,
mainly because the biases across the Pacific Ocean region (between east and west dissect) cancel each other.
The CGCM, however, performs better than the AGCM in predicting the equatorial IOD. The result further shows
that the CGCM’s predictive skill is found to be consistently superior to the AGCMp’s, a result also reported
elsewhere [e.g., Graham et al., 2005]. Furthermore, the AGCMc’s ability is slightly reduced in predicting both
ENSO and IOD from the CGCM or AGCM, suggesting that the AGCM benefits from the multimodel SST forcing.
At longer lead times, the GCMs underestimate the observed variability with a sharp skill drop suggesting weaken-
ing of the atmospheric response to ocean variations. The predictability of these climate modes, notably ENSO, is
much stronger up to several months lead time when their strength and evolution are measured using SST indices
(e.g., Niño 3.4 index) [e.g., Beraki et al., 2014] as opposed to mslp-derived indices (e.g., SOI) presented here.

The rainfall analysis conducted over various ocean basins along the equatorial Indo-Ocean region and southern
Africa subcontinent is presented in Figure 12. During the austral summer, all prediction methods demonstrate

Figure 9. Skill improvement or degradation of the CGCM relative to the AGCM (reference) in predicting mslp (Pa) during
the austral (left) summer (December-January-February (DJF)) and (right) winter (June-July-August (JJA)) for various
month lead time as shown in the title of each plot. The MSE of each model is first computed against the NCEP/DOE
mslp that eventually returns the MSSS. The region with +ve (�ve) scores imply the superiority of the CGCM (AGCM), where
those statistically significant at 95% level with reasonable differences are shaded. Also shown are contours with 0.2 interval.
The significance test is performed with a bootstrap nonparametric procedure [Wilks, 2006].
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nearly similar skills in predicting rainfall and tenden-
cies representing its interannual variability for most
regions considered. The exception is that the
CGCM performs slightly better than the two AGCM
configurations over the equatorial western Pacific
at 1month lead time, while both the AGCM and
the AGCMc perform noticeably better than the
CGCM over the equatorial eastern Pacific at 3month
lead time. Furthermore, the AGCM simulations man-
ifest a tendency to overestimate the interannual
variability over the equatorial Indian Ocean and
southern Africa region, while the CGCM shows a
similar tendency over the equatorial eastern Pacific
basin as the lead time increases. The other differ-
ence worth mentioning is that in most instances
the AGCM skill is slightly better than the AGCMc
and the improvement deepens over the equatorial
Indian Ocean at 3month lead time.

The GCMs demonstrate similar levels of skills dur-
ing the JJA season at 1month lead time as in the
case for the DJF season. At 3month lead time, the
biggest skill difference between the AGCM and

Figure 10. As in Figure 9 but for 500 hPa GH.

Figure 11. Taylor diagram by CGCM, AGCM, AGCMc, and
AGCMp (AGCM forced with persisted SST anomalies) based
on the ensemble mean from the November initialized
hindcasts for the equatorial Indian Ocean Dipole (IOD) and
ENSO forecasts (SOI). The standard deviation is normalized by
the respective NCEP/DOE. The indices are computed from the
respective mslp fields (see text).
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CGCM is found over the eastern and western
Pacific region in favor of the AGCM. The AGCM
skill is also found to be better than the AGCMc
noticeably over the eastern part of the basin.
This skill improvement is presumably attributed
to the multimodel SST forcing. By and large, rain-
fall variability over southern Africa and the equa-
torial Indian Ocean is severely underestimated in
all prediction methods with a tendency to be
slightly worse in the AGCM. In addition, the inter-
annual rainfall variability is also overestimated or
underestimated more during the austral winter
than summer season.

The result further indicates that (at least for the
austral summer at a 1month lead time) there is a
noticeable similarity in the manner in which the
GCMs vary in their skills in the prediction of ENSO
(Figure 11) and of the rainfall of most regions
(Figure 12). In both cases, the superiority of one
model over the other is nearly indistinguishable
which suggests ocean-wide atmospheric response
to ENSO in both models. The contribution of the
equatorial IOD is not clearly manifested on the rain-
fall predictability of most of the regions considered
in the analysis in favor of the CGCM, despite the
CGCM’s superiority over the AGCM being notice-
able in the prediction of IOD. This lack of telecon-
nection in the GCMs is not clear and is deferred
for future work. Observational studies [e.g., Yang
et al., 2010] report the strong association of IOD
with the Asian monsoon during the peak season.

4.2. Comparison Based on Probabilistic Forecasts

In this comparative experiment, the probabilistic
scores are calculated from three equiprobable
categories, defining below normal, near normal,
and above normal. The categories are identified
from the 33rd and 67th percentiles of the 28 year
climatological record. The relative operating char-
acteristic (ROC) area is commonly applied to
probabilistic forecasts to measure the ability of a
forecasting system to discriminate events such as
flood or drought seasons from nonevents [Mason

and Graham, 2002]. Skillful probabilistic forecast, therefore, possesses higher frequencies of hit rates than
false alarms in order to yield the area beneath the ROC curve to be greater than 0.5. The global distributions
of the ROC score differences between the CGCM and the AGCM during the austral summer based on the
November initialized hindcasts in predicting years of wet and dry conditions are shown in Figure 13. The
ROC scores are independently computed against the CMAP rainfall estimates first, and only those scores
which are statistically significant at 95% are retained for the comparison, meaning that those probabilistic
forecasts which are not better than guessing are omitted. The significance test is conducted using a variant
of the Mann-Whitney nonparametric procedure that explicitly accounts for variance adjustment caused by
incidents of ties [Mason and Graham, 2002; Wilks, 2006]. From a visual inspection, the CGCM is seemingly
doing better over the southern African subcontinent, southern Indian Ocean, and Pacific region near the
equator. The AGCM, on the other hand, is more successful over the equatorial Indian Ocean off the coast

Figure 12. Taylor diagram by one- and two-tiered prediction
methods (as shown in the inset) predicting spatially averaged
rainfall based on their ensemble means for the southern
Africa (SA; 35°S–0°S and 0°E –55°E; masked over the ocean),
the equatorial region (20°S–20°N) of Indian Ocean (50°E–110°E),
western Pacific Ocean (120°E–170°E), and eastern Pacific
Ocean (170°E–60°W). The verification is for the austral (top)
summer and (bottom) winter at 1 and 3month lead times.
All standard deviations are normalized by CMAP for the
respective basins.
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of eastern Africa, over the central and eastern Pacific around 10°N and southern Pacific region off the coast
of northeastern Australia. Broadly speaking, however, the two models are more or less similar in their
ability to discriminate below- and above-normal rainfall conditions, and most of the differences are as small
as 0.1 or 0.15.

According to the global surface temperature skill comparison (Figure 14), the GCMs differ significantly
in their ability to differentiate warm or cold episodes from nonevents. The skill variations are, however,
spatially and seasonally dependent. For instance, during the NDJ season at a 0month lead time, the
AGCM outperforms the CGCM over equatorial Africa for both below- and above-normal temperature
conditions (Figures 14a and 14b) with a tendency to persist into the DJF season at a 1month lead time
for the upper tercile (Figure 14d). But the condition is changed in favor of the CGCM as the lead time
increases for the lower tercile (Figures 14c and 14e). Elsewhere, there is an apparent equal distribution
of the CGCM and the AGCM predominance.

We extend the comparison further by including various model setup options of the AGCM. The analysis
mainly focuses on the seasons surrounding the austral summer, since, as noted earlier, it is an active period
of ENSO. Additionally, it is the period when maximum skill is mostly found, particularly at the southern Africa

Figure 13. ROC area differences between the CGCM and AGCM for seasonal rainfall totals (mm). The +ve (�ve) scores
imply that the CGCM (AGCM) is better in discriminating (a, c and e) dry or (b, d, and f) wet episodes than the AGCM
(CGCM). These differences are computed using the November initialized integrations for various seasons and lead times
as shown in the title of each plot, and the skills are independently computed first against the corresponding CMAP
estimates. The differences are statistically significant at the 95% level.
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subcontinent at the seasonal time scale. Table 1 shows the ROC area analysis aggregated over different
regions by various forecast methods in predicting below- and above-normal surface air temperature
conditions. In this comparison, the CGCM is compared with the AGCM with a full ensemble size, reduced
ensemble size (AGCMr), the AGCM forced with the CGCM-predicted SSTs (AGCMc) and persistence
(AGCMp). The last three have the same ensemble size as that of the CGCM. The reduction in ensemble size
is made by retaining the AGCM simulations that use multimodel ensemble mean SSTs as lower boundary
conditions only. The idea is to explore how the AGCM forecast quality fluctuates by differing them in both
terms of ensemble size and SST forcing. The result shows that the AGCM’s fidelity in discriminating hot
and cold events from nonevents is reasonably reduced in the case of AGCMp, and its superiority to the
CGCM is noticeably lost in all regions and lead times considered. The result is consistent to the deterministic
skill presented above (Figure 11). The ability of the AGCM to distinguish events from nonevents is also slightly
reduced with the reduction of the ensemble size (AGCMr) and AGCMc. The latter improvement suggests that
it is beneficial to use the multimodel approach to obtain the SST fields to force the AGCM.

In seasonal climate predictions, the forecast quality is better described by virtue of its reliability (calibration)
and resolution (sharpness). These measures of skills are commonly practiced to compensate for the potential

Figure 14. ROC area difference between the CGCM and AGCM for 2m temperatures. The +ve (�ve) scores imply that the
CGCM (AGCM) is better in discriminating (a, c, and e) cold or (b, d, and f) hot episodes than the AGCM (CGCM). These
differences are computed using the November initialized integrations for various seasons and lead times as shown in the
title of each plot, and the skills are independently computed first against the corresponding CRU estimates. The differences
are statistically significant at the 95% level.
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drawback of the ROC scores in the event where the system is not free of forecast biases. Consequently,
we compare the GCMs using the Brier skill score [Murphy, 1988] and the reliability diagrams [Hartmann
et al., 2002].

The Brier Score (BS) provides a handy measure of accuracy (bias) of probabilistic forecasts aggregated
over all forecast probability bins. It has a negative orientation ranging between 0 and 1. In this context,
the probabilistic forecast attains perfection when the BS approaches zero. The BS can be decomposed
into three terms algebraically, i.e., (BS = reliability� resolution + uncertainty) [Murphy, 1988; Wilks, 2006].
A skillful probabilistic forecast therefore attempts to have the lowest possible value and the largest possible
value of reliability (Brel) and resolution (Bres). Conversely, the uncertainty term (Bunc) is independent of the
forecast itself and is determined by the inherent circumstance of the observed climatological frequency of
the events [see Wilks, 2006].

In this comparative framework, the Brier skill score (Bss) is used to measure the relative benefit of one model
over the other, i.e., (BSS = 1� BSCGCM/BSAGCM) similar to the MSSS (section 4.1). Likewise, the relative benefits
of the reliability and resolution terms are assessed with the same formula, except that the resolution term is
normalized by the uncertainty term [Graham et al., 2005].

Table 1. Probabilistic Skill of the GCMs in Predicting Cold and Warm Events as Measured Using the ROC Area Aggregated Over Three Different Regionsa

Lead

Tropics Southern Extratropics Southern Africa

T1 T2 T2r T2c T2p T1 T2 T2r T2c T2p T1 T2 T2r T2c T2p

Cold Events
0 0.66 0.67 0.65 0.63 0.68 0.59 0.56 0.55 0.52 0.56 0.62 0.60 0.59 0.59 0.60
1 0.69 0.68 0.67 0.65 0.65 0.60 0.60 0.60 0.56 0.57 0.69 0.66 0.63 0.66 0.60
2 0.70 0.70 0.69 0.68 0.64 0.59 0.61 0.60 0.59 0.54 0.77 0.73 0.72 0.73 0.62
3 0.73 0.72 0.71 0.70 0.62 0.60 0.62 0.62 0.63 0.52 0.77 0.74 0.72 0.74 0.59

Warm Events
0 0.68 0.70 0.68 0.66 0.68 0.60 0.57 0.58 0.55 0.57 0.65 0.65 0.62 0.63 0.63
1 0.69 0.71 0.70 0.68 0.67 0.59 0.59 0.59 0.57 0.56 0.69 0.69 0.68 0.67 0.63
2 0.70 0.72 0.70 0.69 0.63 0.58 0.59 0.59 0.60 0.53 0.76 0.74 0.72 0.73 0.60
3 0.72 0.72 0.71 0.71 0.63 0.60 0.62 0.61 0.62 0.54 0.77 0.76 0.74 0.77 0.59

aThe analysis is based on the November initialized hindcasts and 0 lead stands for NDJ, 1 for DJF, etc. T1, T2, T2r, T2c, and T2p represent, respectively, the
CGCM, AGCM, AGCMr, AGCMc, and AGCMp. The ensemble sizes used in the analysis for the various forecast strategies are in Table 1. In this analysis, tropics
and southern extratropics global zonal belt, respectively, 20°S–20°N and 20°S and 20°S–90°S. Sothern Africa (SA) as in Figure 12.

Table 2. The CGCM’s Benefit Relative to Various AGCM Configurations Predicting 2m Temperaturea

Tercile

Tropics Southern Extratropics Southern Africa

Bss Brel Bres Bss Brel Bres Bss Brel Bres

CGCM Versus AGCM
Lower �3.7 �43.1 0.5 �4.2 �41.1 0.5 0.2 �73.1 3.5
Upper �7.9 �63.0 �2.7 �4.7 �41.0 �0.2 �7.0 �69.7 �2.0

CGCM Versus AGCMr
Lower �0.8 �25.0 1.7 �3.0 �28.2 0.2 7.6 16.4 6.9
Upper �4.3 �40.4 �1.1 �2.0 �17.9 �0.1 �1.0 �36.5 1.6

CGCM Versus AGCMc
Lower 1.1 �20.5 2.9 2.0 4.8 1.7 1,2 �57.5 4.1
Upper 0.8 �14.8 2.0 0.8 �0.7 1.0 �1.1 �37.6 1.4

CGCM Versus AGCMp
Lower 3.0 1.0 3.2 2.9 12.1 1.6 13.4 40.5 10.1
Upper 3.0 8.0 2.6 3.9 22.4 1.2 8.1 19.5 7.2

aThe relative probabilistic skills are measured using the Brier skill score (Bss) and its algebraic decompositions, i.e., Brier reliability (Brel) and Brier resolution (Bres).
Positive CGCM benefits are shown in bold type against various AGCM forecast strategies. The analysis is for DJF at 1month lead time. The CGCM, AGCMr,
AGCMc, and AGCMp configurations use 10 ensemble members, while AGCM uses 30 ensemble members (see text).

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023839

BERAKI ET AL. PERFORMANCE COMPARISON OF GCMS 11,167



The CGCM and the AGCM comparison in terms of the BSS, Brel, and Bres for surface air temperature during the
midaustral summer at 1month lead time is presented in Table 2. The AGCM (with full ensemble size) exhibits
a better performance than the CGCM in terms of BSS and Brel for the three regions considered. The maximum
benefit of reliability of the AGCM is found in the southern Africa region (73.1% and 69.7% for cold and warm
events, respectively) followed by the tropics and then the SH extratropics. However, in terms of Bres, the
CGCM (AGCM) tends to outperform the AGCM (CGCM) in predicting cold (hot) events. The AGCMr also attains
a better Brel and Bss, with the exception of the below-normal temperature over the southern Africa region
despite the fact that the Brel drops by about 50%. It is noticeable that the CGCM mostly outscores the
AGCMc in terms of Bss and Bres, while the AGCMc performs better that the CGCM in terms of Brel. However,
the CGCM has discernibly outperformed persistence (AGCMp) in all Brier terms for all regions.

Figure 15. Reliability diagrams by the CGCM (10 ensemble size), AGCM (30 ensembles size), AGCMr (ensemble size reduced
to 10), AGCMc (from the SCM predicted SST forced AGCM, ensemble size reduced to 10), and AGCMp (from persisted
SST forced AGCM integrations, 10 ensemble size) in predicting below- and above-normal surface air temperature and
rainfall conditions during the austral summer seasons (DJF) at 1 month lead time for the (top) tropical region between 20°S
and 20°N and the (bottom) southern African region. The frequency of utilization on the different probability bins for both
below- and above-normal categories are also shown on the top left corners of each diagram. The grey and black lines
represent cold (dry) and warm (wet) events, respectively.
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To gain a deeper insight into their performance differences, the GCMs are further compared using reliability
diagrams. The reliability diagram is a graphical tool that is constructed from the computation of the hit rate
for the set of forecasts for individual probability bins separately (as opposed to the generalization in the case
of the BSS and its decomposition terms) and then plotted against the corresponding forecast probabilities.
[Hartmann et al., 2002; Wilks, 2006]. The most reliable forecasting system is determined by the extent of its
proximity to the diagonal line (perfect reliability).

Figure 15 shows the reliability diagrams for the southern African and tropical regions. The verification for
unusually warm (wet) and cold (dry) events during the austral summer (DJF) at 1month lead time are for
the CGCM and for the three cases of the AGCM hindcasts. Also shown is the relative frequency of the use
of the forecast bins, which is commonly referred to as the “sharpness diagrams” on the top left corner of each
plot both for below- and above-normal conditions. The result shows that the AGCM (forced by the multimo-
del SST forecasts) and the CGCM both demonstrate similar levels of skill in their ability to detect unusual
conditions. Notwithstanding, the CGCM shows relatively more overconfidence than the AGCM at higher
probability bins (particularly 0.8), which presumably clarifies the reason why the CGCM is heavily penalized
in terms of the Bss and Brel (Table 1).

The result of Figure 15 further indicates that the CGCM and the AGCMc exhibit slightly better sharpness for
probabilistic temperature and rainfall predictions, respectively, as the sharpness diagrams are flattening
when compared to all cases of the other forecast methods. Generally, however, these different forecasting
methods tend to fall mostly in the lower or climatological probabilities particularly for rainfall, suggesting that
the GCMs are more reluctant to issue warnings with higher probabilities.

The reduction of the ensemble size has only caused a minor change in the reliability diagram’s shape
(i.e., a slight displacement of the curve toward overconfidence when compared to the use of the full ensemble),
meaning that the skill drop is too small to alter the circumstance in favor of the CGCM. The AGCMc attains
more or less a comparable reliability level to the AGCM (with full or reduced ensemble size), even though
its reliability is slightly compromised for probabilistic temperature prediction during the austral summer.
Notwithstanding, there is a substantial degradation of skill in favor of the CGCM when the AGCM is forced
with persisted SST (AGCMp).

Generally, the result reveals that lack of coupling does not degrade the predictive skill of the AGCM in favor of
the CGCM including under a perfect model framework in which the CGCM SST is used to constrain the AGCM.
This result provides evidence of the importance of the role of the predicted SST, notably the multimodel SST,
forcing and the oceanic evolution of sea-air interaction in seasonal climate prediction. The study attests to
the strongest determining factor in the success of the seasonal prediction being the robustness of the SST
information that flows to the GCMs whether prescribed or interactively coupled.

5. Summary and Conclusions

The steady increase over recent years in the use of coupled models for seasonal forecasting has been at the
expense of uncoupled models owing to the fast development of computational resources and the envisaged
advantage of coupled models in representing state-of-the-art seasonal forecasts more realistically. Despite
many numerical studies conclusively present evidence in favor of coupled models, a gap still exists whether
these models are similar or differ widely in their predictive skill in an operational and hence practical environ-
ment. With this in mind, we revisit the subject under a practical model framework, where a multimodel SST
anomaly and its uncertainty envelope are used to constrain the atmospheric model. This model comparison
study uses the SCM and its atmosphere-only version, which runs concurrently at the SAWS for seasonal forecast
production in amultimodel environment. Furthermore, the twomodels are suitably configured in such amanner
that the role of coupling on the predictive skill differences is better distinguished. In this experimental framework,
the GCMs share a great deal of resemblance in their configuration except for the manner in which the SST
information is communicated within the GCMs.

The analysis finds that the two models are able to represent the observed spatial patterns of rainfall and
that climatologically they do not differ strongly in terms of bias distribution both during the SH summer
and winter seasons even though the models are somewhat more biased for the latter season. In addition,
the comparative analysis reveals that the symmetry and position of the ITCZ and the midlatitude storm tracks
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are well represented in both models with a tendency of the CGCM to overestimate the peak of the rainfall
distribution in the tropics. This overestimation over the tropics is presumably attributed more to the SST bias
than to the air-sea coupling process which is largely minimized in the AGCM with the use of multimodel SST
forcing. There are two possible reasons that may substantiate the finding. First, the intensity and distribution
of biases are mostly found during the austral winter period with mostly marginal difference between the
GCMs which tends to coincide with the poor predictive skill of ENSO (due to the NH spring barrier).
Second, the biggest bias differences during the austral summer and winter seasons between the GCMs tend
to coincide for the most part with neutral ENSO conditions.

Results from the predictive skill comparisons indicate that most of the differences in the skill of the GCMs
arise over the tropical region. Outside the tropics, the superiority of one model over the other is mostly
indistinguishable, and the skill levels are also generally lower than over the tropics. The result further indicates
that there is a noticeable similarity in themanner in which the GCMs vary in their skills in the prediction of ENSO
and rainfall over the equatorial Indo-Pacific basins and the southern Africa subcontinent. In both cases, the
superiority of one model over the other is mostly indistinguishable and suggests an ocean-wide atmospheric
response to ENSO.

In addition, the AGCM’s fidelity is drastically reduced in the case of AGCMp to the extent that the superiority
of the CGCM becomes noticeable. The benefit of the AGCM over the CGCM is also slightly reduced with
decreasing ensemble size but not to the extent that can lead to the shift in the superiority balance. Again,
this result attests to the conclusion that the role of the multimodel SST forcing is paramount and is the reason
why the AGCM and CGCM have comparable levels of forecast skill.

Generally, what has transpired from this comparative experiment is that the GCMs differ widely in their
performances, and the issue of the superiority of one model over the other is mostly dependent on space
and time (seasonality). One may conclude that the CGCM has the upper hand in the Asian monsoon region
during the austral winter. However, the CGCM skill becomes weaker with the increase of lead time or in a
different season. The diversity in their predictive skill as function of space and time may be beneficial in
complementing each other in some way.

The modeling work presented here suggests a circumstance under which AGCMs and CGCMs may be able to
produce similar levels of skill, notwithstanding the fact that only two such models were considered. At the
very least, the study has provided some guidance on how best to optimize an AGCM under circumstances
in which limited computational resources only supports the use of AGCMs in an operational forecast
environment, a situation commonly found in developing countries such as South Africa. An optimal AGCM
configuration, however, depends heavily on skillful SST forecasts, here obtained through amultimodel SST fore-
cast system. These predicted SSTs may be reproduced from a number of CGCMs, and such ocean-atmosphere
models are therefore essential for skillful seasonal climate predictions when AGCMs are used. A significant
amount of work and investment has already gone into AGCM development, but the potential for further
improvement of AGCM-based forecasts thus depends to a large extent on the improvement of CGCMs.
Nowadays many leading institutions make their seasonal forecast, including SST forecasts, freely available to
national and regional centers under the auspices of theWorldMeteorological Organization (WMO), and so such
SST forecasts can be assimilated into AGCM operational forecast systems.
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